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Abstract. The food industry is highly competitive, and in order to survive,
manufacturers must constantly innovate and match the ever changing tastes
of consumers. A recent survey [1] found that 90% of the 13,000 new food
products launched each year in the US fail within one year. Food companies
are therefore changing the way new products are developed and launched,
and this includes the use of intelligent computer systems. This paper
provides an overview of one particular technique, namely Bayesian Belief
networks, and its application to a typica food design problem. The
characteristics of an "ideal" product are derived from a small data set.

1. Introduction

Bayesian Belief Networks are graphical models that encode probabilistic
relationships between variables of interest. They have become increasingly popular
within the Al community since their inception in the late 1980’s [2] [3], due to their
ability to represent and reason with uncertain knowledge. They have been used
successfully in expert systems, decision support systems and diagnostic systems,
among others. Figure 1 shows atypica network, described in more detail in part 3.

Historically, one of the first applications of Bayesian networks was to
medical diagnosis. For example, a Bayesian network system has been developed
from a database containing descriptions of many symptoms and associated
diseases [4]. By entering a brief description of a patient’s symptoms, the system can
deduce likely causes, i.e. diseases. The system was designed as a decision-support
system for use by medical experts, and asateaching aid.

Bill Gates recently described Microsoft’s competitive advantage as being its
expertise in Bayesian networks [5]. Microsoft have been actively recruiting experts
in the field since the early 1990's, and have become a significant research force.
They have also released software components using Bayesian networks, such as the
Office Assistant and the grammar checker, both in Office 97. Further applications of
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Bayesian networks include robot guidance [6], software reliability assessment [7],
data compression [8] and fraud detection [9].

A great deal has been achieved with Bayesian networks, and (the author
believes) they can and will be applied to product design. Products are artefacts
purchased and used because of their properties and functions [10]. They are
designed to meet the end-users' requirements, whether this means a car must be fast,
a mouse-trap must be "better", or a plate of food must taste nice. Because of their
ability to learn, adapt and explain, intelligent systems such as Bayesian networks
can aid product designersin their work.

The next section describes the nature of the data used in food design work.
Thisis followed by an overview of Bayesian networks, and descriptions of how the
models can be built and used. Finally, some experimental results are presented.

2. Food Data

When designing new food products, companies typically obtain data from three
sources: sensory panels, preference panels, and instrumental data. The nature of
instrumental data is product-specific, and is not covered here in detail, but may
include digital images, acoustic imaging or chemical fingerprinting.

The sensory panel is a group of typically 10-20 people, selected and trained
for several months. The panel derives their own descriptors of product attributes,
which can then be systematically used to describe different varieties of the product.
The panel typically produces between 8 and 20 descriptors after discussion and
analysis. Members of the panel are then presented with a variety of different
products, selected to represent a wide range of flavours, colours, etc. They then
measure each sample by ranking it for each descriptor. The ideal sensory panel
should produce absolutely consistent and uniform results, allowing the panel to be
treated as an instrument. In practice, human perception is neither absolute nor
constant.

The preference panel is alarger group of untrained people, typically 50-500
potential consumers, who are bought in “off the street” specifically for the trials.
They are individually presented with a few samples and are then asked to rank each
one on a simple preference scale. No training is given and no discussion between
panellists is allowed, so the results will be entirely subjective, and vary from
panellist to panellist. The relatively large panel size should smooth out any
unwanted discrepancies.

Once the preference panel has classified the samples, the sensory panel data
is re-examined, to determine which sensory attributes best distinguish the different
preferences. For example, suppose the preference panel gave two samples
significantly different grades. Then if the sensory panel gave both of them the same
grade for some measure, e.g. shape, then this attribute is a poor predictor of quality.
If a correlation can be found between the one or more of the sensory panel attributes
and the preference panel scores, then this can be used to guide future product design
and marketing.

The entire data-gathering process is very expensive and very time-
consuming, and depends on human perception, which lead to the most striking and
important features of the data sets: they are small and sparse, and contain
uncertainty. The data used here is described in section 5 and included as an
appendix.
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3. Featuresof Bayesian Networks

Bayesian Belief Networks are graphical representations of the joint probability
distributions over a set of discrete variables, and incorporate conditional
independence assumptions. They consist of a directed acyclic graph (DAG) such as
the simple model shown in Figure 1, and a set of conditional probability tables, such
as Table 1. In the graph, each node represents a variable and the arcs between nodes
specify the independence assumptions between the variables. More precisely, each
variable is "conditionally independent of any combination of its non-descendants,
given its parents' [8]. Thus Figure 1 shows, for instance, that given "colour”, then
"uniformity of colour" has no influence over any variable.

One conditional probability table is determined for each node, defining the
probability of the variable being in each possible state, given each of the possible
states of its parent node(s). If a node has no parents, the unconditional probabilities
are used instead.

Table 1 shows the conditional probability distribution for the "particle size"
node, conditional upon its parents, namely "uniformity of size" (US) and "texture"
(T). Each cell in the table has two numbers, the probability that the particle size is
low (i.e. "small") and the probability that it ishigh (i.e. "large").

Bayesian networks have a number of features that make them suitable for
product design, as shown in Table 2 and discussed in the remainder of this section.

3.1 Explaining away observations

"Explaining away" can be defined as "a change in the belief in a possible
explanation if an alternative explanation is actually observed" [11]. The standard
example of explaining away is the lawn sprinkler: suppose we observe that the lawn
is wet one morning. There are two possible causes: either it rained or the sprinkler
was left on. Our belief in both of these explanations increases. We then observe that
our neighbour’s lawn is also wet, and so deduce that it rained last night. Because we
now believe that the wet lawn was caused by the rain, we no longer have any reason
to believe that the sprinkler was left on, so we should retract that belief [12].

In the case of food modelling, if we know that sweet foods are generally
preferred, and we have a particular sample that is both sweet and popular, then our
simple model gives us no reason to believe its colour will affect its popularity. More
traditional rule-based expert systems fail to cope with this type of situation, because
the systems are modular, meaning that the rules are fired with no reference to the

Explaining away Make effective use of all available information
Bi-directional Inference | Can diagnose what causes high preference
Complexity Can scale up to represent complex models
Uncertainty Can deal with uncertainty in the data
Confidence values Provide confidence measures on results
Readability Produce graphical, transparent models

Prior Knowledge Can incorporate expert knowledge

Table 2: Features of Bayesian Networks
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context of other rules or the source of the data. The conditional probabilities in the
Bayesian network models encapsul ate the desired effect.

3.2 Bi-directional Inference

Many intelligent systems (e.g. feedforward neural networks, fuzzy logic) are strictly
one-way in the sense that when a model is given a set of inputs it can predict the
output, but not vice versa. The question one really wants to ask "What features
would a product have, if it had a high preference score?' This inverse problem can
be solved by bi-directional modelling, where inputs can be used to predict outputs,
and outputs can be used to "predict” or diagnose inputs.

Bayesian networks can do this within a single structure because variables are
not specified as being solely for input or for output. By applying Bayes' theorem,
the direction of the relationship can be reversed. For example, given the rule "If
(product is sweet) then (product is preferred)” and given the fact "product is sweet”
we can obviously deduce that it is preferred. However, with a Bayesian system, we
might observe (or hypothesise) that "product is preferred* and deduce that this
preference must be caused by its sweetness, i.e. that "product is sweet". In other
words, while many systems can perform induction, Bayesian networks can also
perform abduction.

3.3 Complexity

The independence assumptions expressed by the graph mean that fewer parameters
need to be estimated because the probability distribution for each variable depends
only on the node's parents. This independence assumption allows us to factorise the
network, considering each node and its parents in isolation from the rest of the
model. This means that far fewer parameters are needed to fully specify the
relationships between the variables, than would be required by a fully connected
network, or any other global, "unfactorabl€" model.

Similarly, when learning the structure of the graphs, the search can be local,
with the optimal set of parents for each node being selected independently of the
rest of the model. Thus even very complex models can be discovered without
suffering from a combinatorial explosion. These efficiencies are particularly
important when only small data sets are available, as is often the case with food
design. The K2 algorithm described | ater relies on this feature.

3.4 Uncertainty

There are many sources of uncertainty, such as distortion, incompleteness and
irrelevancy [11]. Consider asking a group of preference panellists, "How much do
each of you like product X?' However much time is spent defining or describing the
word "like", there is no guarantee that any two subjects will actually use the same
scale to measure the product on, irrespective of personal differences in taste.
Furthermore, experimental results show that individual subjects will give the same
product different scores at different times, depending on the context, their
mood, etc. The same problem occurs with sensory panel data. In common with all
Bayesian systems, Bayesian networks model "degrees of belief", equivalent to
probabilities, rather than a crisp true/false dichotomy. This means that uncertainty
can be handled effectively, and explicitly represented.
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3.5 Confidence Values

The output of any Bayesian model is a probability distribution, rather than simple
scalar or vector. For example, whereas a neural network might predict a scalar
preference score of say, 0.753, a Bayesian belief network might give an output in
the form: p(low) = 0.28; p(high)=0.72. This sort of information can be used as a
measure of confidence in the result, which is essential if the model is going to be
used for decision support.

3.6 Readability

When a (human) designer produces technical drawings and reports, the aim is to aid
manufacture, sales, marketing and so on. When computers are being used to
generate the designs automatically, it is important that they are till readable. No
one is going to invest a great deal of time, money and expertise developing a
product if they cannot see why it will be good. Due to their graphical nature,
Bayesian networks provide a transparent model, although very complex systems
may require networks too large to be comprehensible.

3.7 Prior Knowledge

It is impossible to avoid the use of prior knowledge when building models. By
defining the bounds of the solution space, the representation used, the scoring
measure used and so on, the analyst will inevitably introduce biases. Bayesian
approaches make these prior assumptions explicit and formal. The size of the data
sets also influences the use of prior knowledge. Because food design data sets are
typically small, little information is contained in them, so the use of alternative, non-
electronic sources of information (i.e. experts) is significant. This could be in the
form of selecting nodes, sub-graphs or even entire graphs, if these are known to be
important.

4. Bayesian Belief Networks Theory

Having described many of the features of Bayesian networks, it is now time to
describe some of the processes involved in building and using them. There are three
problems that must be solved: defining the graphical structure (Bs), defining the
parameters in the form of the conditional probabilities (By), and finally using the
models to make predictions. Further details of learning both the structure and
parameters can be found in [13], and making predictions (inference) is covered
in[12].

4.1 Defining the Structure

The graph consists of two parts: a collection of nodes and a collection of arcs
joining them. In graph theory, these are known as vertices and edges respectively. In
some cases, suitable expert knowledge may be available to allow the entire structure
to be defined by hand, with the expert stating which variables are relevant, and how
they interact. More often however, such knowledge will be unavailable, or at best,
imperfect.

The total space of all legal (i.e. directed, acyclic) graphs over a set of nodes
is greater than exponential in the number of nodes. Therefore, in all but the simplest
cases, an exhaustive search is impossible, requiring the use of heuristics. A number
of search algorithms have been used, a selection of which arelisted in Table 3.
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Method Comment References
K2 Finds parents for each node via a greedy search. [15]

Genetic Congtraints are similar to the Travelling Salesman | [16] [17]
algorithms Problem. Used to provide node ordering for K2.

Branch-and- | Often used in Al to limit the combinatorial [18]

Bound explosion, e.g. during feature selection.

Structural Learns structure and parameters with amodified [19]

EM Expectation Maximisation (EM) agorithm.

Table 3: Structure search techniques

With any search technique, we need some way of determining the quality, or
fitness, of a Bayesian network. Given that we are trying to model some data, the
direct way of considering thisisto ask "How well does the data fit this model ?* The
Bayesian approach to this problem is to assume that the data was actually generated
by the model, and then reverse the question to ask "How likely is it that this model
produced the data?' Thisreversal is possible using Bayes Theorem [14].

The experiments described later use the "K2" algorithm proposed by Cooper
and Herskovits [15], and outlined here. Cooper and Herskovits show that the ideal
model, i.e. that which maximises the posterior probability of the network structure
given the data, p(B¢D), also maximises the joint probability, p(Bs, D). Thisis easier
to calculate, and they derive a polynomial-time function of this joint probability,
using the frequency of variable instantiations in the data set. This gives a
straightforward way of quantifying the goodness of fit between the model and the
data, and therefore defines a fitness function for the models. We now have to search
through the model space to find a good network structure.

To make the search tractable, the search spaceis limited by making a number
of assumptions. K2 assumes that: all the variables are discrete; al the cases are
independent given the model; there is no missing data; there is no prior knowledge
regarding likely structures. In the current work, these present no problems. the
variables can easily be discretised; there are no dependencies between the cases; the
cases are complete; and there is no knowledge about the structures. K2 requires a
fixed ordering of the nodes, such that each node will only be considered as a
possible parent of nodes that appear later in the ordering. The algorithm also
reguires a maximum fan-in value, i.e. an upper bound on the number of parents any
single node may have. Finaly, it requires a complete database of cases.

By definition, nodes depend only on their parents;, K2 makes use of this by
searching for the optimum set of parents of each node independently, before finally
constructing the network. The algorithm proceeds by considering each node in turn,
and defining an initially empty set of parents for that node. Every possible parent is
then considered, and the parent that maximises the K2 score is added to the node’s
parent set. Further parents are considered within the constraints of node ordering
and maximum fan-in, until no further additions improve the fitness score. Then the
parents of the next node are considered. The end result is alist of parents for each
node. Thislist is sufficient to completely define the structure of a Bayesian network.
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4.2 Defining the Parameters

Once the graph has been defined, the only remaining parameters are the conditional
probabilities for each node. Remembering that each node depends only on its
immediate parents, we need only estimate p(v|ry,) for each node, where v is the
variable (node), and T, is the set of parents of the node. All the variables must be
discrete in order for the propagation and inference algorithms to work (see below),
so continuous data must be converted to discrete values prior to use.

The simplest way of estimating the probabilities is to use the frequency with
which each configuration of variables is found in the data. As the number of data
points observed increases, this frequency will tend towards the true probability
distributions; however, the small data sets typical of food design studies tend to be
very sparse when considered this way, as many configurations will not have been
observed. An dternative approach therefore is to initially assume a particular
distribution (e.g. uniform) and then update this to encapsulate the information
contained in the data. This can be done using the Expectation Maximisation (EM)
algorithm [20], optionally combined with an equivalent sample size [21].

4.3 Inference

Given a complete model, defining both the structure and the conditional
probabilities, we can begin to make predictions. If the values of some variables are
known ("observed"), then the probabilities of the remaining variables can be
calculated. This is done by fixing the states of the observed variables, and then
propagating the beliefs around the network until al the beliefs (in the form of
conditional probabilities) are consistent. Finaly, the desired probability
distributions can be read directly from the network. The standard propagation
algorithm is due to Lauritzen and Spiegelhalter [2].

5. Data, Experiments and Results

Two experiments are described here. The first uses the K2 algorithm to build
Bayesian networks, and compares their accuracy at predicting preference scores
against two aternative models. The second experiment uses one such Bayesian
network to estimate the characteristics of the "perfect” product under consideration.

The data used throughout the remainder of this paper was provided by
Unilever Research, and consists of a preference score ("P1") and eight sensory
panel scores ("S1" to "S8"). A total of just 20 records were available, each record
being a complete set of data for a single sample of the food. The exact nature of the
food is commercially confidential, but the samples were carefully selected to
represent the full range of varieties of the product.

The raw data is included in Appendix 1. Each value was converted to a
binary score, by assigning the lowest ten scores of each attribute to the class "low"
and the ten highest scores to the class "high". A more precise model could be
obtained by discretising each attribute into more than two states, but the data would
become extremely sparse.

5.1 Performance Measures

Two measures of performance were used: predictive accuracy and joint probability.
To calculate the predictive accuracy of each model, the preference (P1) was treated
as a target class, which the sensory scores (S1-S8) were used to predict. The
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accuracy score is simply the proportion of records that were assigned to the correct
preference class (high or low). However, if the same data is used to both build and
test the model, the resultant score tends to underestimate the model’s true accuracy
[14]. Thisis particularly true when small data sets are used (as in the current work),
because models will tend to overfit the data, fitting both the underlying distribution
and the inherent noise. To avoid this, leave-one-out cross-validation is often used.
Thus given 20 records, we construct 20 models, each being built using a different
subset of 19 records, and each being tested on the remaining record. This produces
20 accuracy scores, the mean of which is a good estimate of the model’s true
accuracy.

The maximum likelihood model is that which maximises p(B¢|D), which [15]
show is proportional to p(Bs,D), the joint probability of the network and the data.
Therefore in this work, this joint probability was calculated for every Bayesian
network and the naive Bayes classifier (described below). The entire data set was
used to build each model and thus to calculate this probability score without the
need for any cross-validation. This is because when performing Bayesian inference,
complex models have lower prior probabilities than simple models, giving Bayesian
techniques a built-in safeguard against overfitting. Note that no equivalent score
exists for standard neural networks.

5.2 Model Performance

As an initial study, three techniques were compared to see which could most
accurately predict preference from the sensory scores. Table 4 summarises the
results.

The three techniques used were a neural network, a naive Bayes classifier,
and a Bayesian belief network. The neural network was a standard MLP, with 8
inputs (the sensory data), 5 hidden nodes and one output (the preference score).
Leave-one-out cross-validation was used to measure the neural networks “accuracy
at predicting the preference score, so each evaluation cycle actually consisted of
building and testing 20 neural networks. Of 100 cycles, the mean accuracy was
0.796. [14] describes neural networks in more detail, as well as several cross-
validation techniques.

The naive Bayes classifier is a special case of Bayesian network that treats
one variable as a target class. It assumes that all the other variables depend only on
this class, being conditionally independent of each other. Here, we treat preference
(P1) as the target class and assume that the eight sensory scores are independent.
This produces a network where every sensory node has exactly one arc, which leads
from the preference node, as shown in Figure 2. Using leave-one-out cross-
validation gave an estimated accuracy of 0.80 for the naive Bayes classifier. The log

Accuracy Log Joint Probability
Neural Network 0.796 (0.05) N/A
Naive Bayes Classifier 0.800 (0.00) -123.08 (0.00)
Bayesian Belief Network 0.800 (0.00) -107.51 (2.03)

Table 4: Comparison of models.
"Accuracy" is the estimated accuracy with which the model predicts P1 given S1-S8.
"Log Joint Probability" is the log of the joint probability of the model and the data,
In p(Bs,D). The standard deviation of each score is shown in brackets.
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Figure 2: Naive Bayes Classifier

joint probability was -123.08. Note that the corresponding variances shown in the
table are zero, because the network structure is fixed, so the accuracy score has no
variance.

The Bayesian belief networks used in this study were generated using the K2
algorithm, and Figure 3 shows one such network. The K2 agorithm was executed
100 times, with randomly generated node orderings. In each case, the joint
probability p(Bs,D) was calculated, and had a mean of -107.51. A separate
experiment repeatedly used K2 with leave-one-out cross-validation. In every case,
K2 selected the same two variables (S5 and S6) as parents, and so gave the same
accuracy score of 0.80. This shows that (at least for this data set) the ordering of the
nodes presented to K2 is not critical.

These results show that Bayesian belief networks, neural networks and naive
Bayes classifiers are equally effective at the specific task of predicting product
preference from sensory panel scores.

Note that the Bayesian belief networks are constructed to model the entire
data set, rather than just one relationship within it. In contrast, the other two
techniques used here explicitly build models that are designed to predict preference.
The final column of Table 4 shows that as well as making equally good preference
predictions, the Bayesian network models the data more closely than the naive
Bayes classifier, as indicated by the higher log probability value. This suggests that
the assumptions made by the naive Bayes classifier are invalid, and therefore that
the sensory panel variables are not independent.

5.3 Belief Propagation
If Bayesian networks are no more accurate than simpler alternatives, why use them?
As outlined in section 3, Bayesian belief networks have many attractive features,
including abduction: the ability to diagnose likely causes of an observed effect. In
the current work, this is estimating the most likely characteristics of a hypothetically
perfect product.

The Bayesian network shown in Figure 3 is used here to demonstrate how
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Figure 3: Bayesian network for sensory data
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predictions can be made from limited observations. The parameters (probabilities)
were defined using the data frequencies only, and the Lauritzen and Spiegelhalter
algorithm [2] was used to propagate several observations and to make predictions.

Graph (a) in Figure 4 show the effect of observing, for some hypothetical
sample, that the value of S1 islow. The chart shows the nine variables used in the
model (Figure 3) with the first bar of each pair showing the prior probability of the
variable having a "high" value, and the second bar showing the corresponding
posterior probability, after the observation and belief propagation. For example, the
prior belief that any given sample would have a high S1 measure is roughly 0.5,
while the posterior is 0.0 - we are stating the level is low, so the probability of it
being high is zero. The probability of a high S4 has increased from 0.2 to 0.5,
suggesting that S1 and $4 are inversely correlated to some extent, so that a low S1
tends to "cause" a high $4. Finally, the probability of a high preference score (P1)
decreases from 0.4 to 0.2, suggesting that the preference panel dislike products with
alow S1 score.

Observation: S1 =low Observation: P1 = high
10 10
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Figure 4: Single variable observations

Chart (b) shows the effect of observing a high preference score (P1). Here
we are asking, "What features must a product have in order to be preferred?' The
observation leads to an increase in the belief that the sample will have a high S1
score and a low $4 score. The other variables are largely unchanged, suggesting
they have little direct influence over preference. The posterior probabilities here
describe the "perfect” product according to the model.

6. Conclusions

Bayesian Belief Networks are a valuable addition to the product designers’ toolkit.
They are powerful tools for developing graphical models from a combination of
data and expertise. They can be built from modest data sets, with or without
background knowledge, and yet are scaleable because they are afford local
optimisation. The results here show that they are as accurate as neural networks, but
with the advantage of being reversible. This allows probabilistic predictions of
optimal designs to be made, and these models are now being used to aid consumer
preference modelling.

10
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8. Appendix: Data Set

The table below contains the raw data used in this work. Each row represents a
record for asingle sample. Column "P1" is the preference score, the remaining
columns being eight sensory scores.

Thisdatais aso availablein ASCII format from this URL:
http://www.cs.ucl.ac.uk/staff/D.Corney/FoodDesign.html

Pl S1 S2 S3 S4 S5 S6 S7 S8

3.329 | 6.050 | 2.560 | 6.373 | 2.649 | 3.587 | 1.670 | 6.230 | 1.012
3.700 | 5659 | 2577 | 4579 | 3.377 | 5.278 | 3.119 | 2457 | 1.206
4.004 | 5442 | 1.495 | 8.175 | 2.384 | 4.315 | 2.133 | 8.669 | 0.930
2400 | 6.185 | 1.607 | 7.763 | 1.948 | 1.646 | 3.435 | 8.374 | 0.940
3.109 | 4391 | 1.916 | 6.748 | 3.628 | 4.220 | 2.206 | 6.995 | 0.982
8.253 | 7.848 | 2.687 | 8.258 | 1.482 | 9.606 | 0.992 | 4.881 | 1.165
5.160 | 5834 | 1.536 | 8588 | 2.348 | 7.116 | 1.228 | 8.902 | 1.025
4.240 | 6.506 | 1.854 | 6.325 | 2.267 | 4.370 | 1.866 | 5.510 | 1.010
1.784 | 1.854 | 3400 | 3.739 | 7.736 | 1.378 | 8.607 | 6.603 | 1.046
10 | 6.262 | 8.248 | 0.848 | 8.857 | 2.042 | 7.375 | 1.087 | 8.896 | 0.935
11 | 2.087 | 1.920 | 4.680 | 2.627 | 8.152 | 2.797 | 5.017 | 4.837 | 1.068
12 | 5287 | 8073 | 1.016 | 8.598 | 2.189 | 4.294 | 1.329 | 8.635 | 0.951
13 | 6.180 | 7.023 | 2.279 | 6.321 | 2.148 | 6.683 | 1.213 | 5.041 | 1.016
14 | 2538 | 5.836 | 2.033 | 6.886 | 2.227 | 2.735 | 2.982 | 7.033 | 1.070
15 | 7.987 | 8312 | 2535 | 8.848 | 1.273 | 8.034 | 1.132 | 5.984 | 1.029
16 | 3587 | 7.289 | 1.411 | 7.863 | 1.510 | 2.969 | 1.508 | 7.854 | 0.987
17 | 5131 | 3586 | 6.424 | 1.943 | 2.106 | 8.186 | 1.018 | 5.313 | 2.731
18 | 2211 | 5210 | 1.765 | 7.862 | 2.087 | 1.512 | 2.466 | 9.283 | 1.022
19 | 7.298 | 7.147 | 3.889 | 6.666 | 2.109 | 8.161 | 1.022 | 3.699 | 1.028
20 | 5318 | 7.501 | 1.667 | 7.670 | 1.338 | 4.870 | 1.075 | 6.958 | 1.053
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