
A Logical Framework for Template Creation and

Information Extraction

David Corney∗, Emma Byrne†, Bernard Buxton∗ and David Jones∗

∗Department of Computer Science, University College London

Gower Street, London WC1E 6BT, UK

Email: D.Corney@cs.ucl.ac.uk or D.Jones@cs.ucl.ac.uk
†The Business School, University of Greenwich

Old Royal Naval College, Park Row, London, SE10 9LS, UK

Email: E.L.Byrne@greenwich.ac.uk

Abstract— Information extraction is the process of automati-
cally identifying facts of interest from text, and so transforming
free text into structured data. The field has a history of ap-
plications analysing text from news and financial sources and
more recently from biological research papers. Although much
of this work has been successful, it has tended to be ad hoc. We
propose a more formal basis from which to discuss information
extraction. This will aid the identification of important issues
within the field, allowing us to identify the questions to ask as
well as to formulate some answers.

It has long been recognised that there is a need to share
resources between research groups in order to allow comparison
of their different systems and to motivate and direct further
research. We strongly feel that there is also a need to provide a
theoretical framework within which text mining and information
extraction systems can be described, compared and developed.
Our framework will allow researchers to compare their methods
as well as their results. We also believe that the framework will
help to reveal new insights into information extraction and text
mining practices.

One problem in many information extraction applications is
the creation of templates, which are patterns used to identify
information of interest. Within our framework, we describe
formally what a template is, with definitions of words and
documents, and other typical information extraction and text
mining tasks, such as stemming and part of speech tagging,
as well as information extraction itself. This formal approach
enables us to show how common search algorithms could be
used to create and optimise templates automatically, by means
of sequences of overlapping templates, and we develop heuristics

that make this search feasible.

I. INTRODUCTION

Information extraction (IE) [1] applications include

analysing text from news and financial sources [2] and biolog-

ical research papers [3], [4], [5]. Competitions such as MUC

and TREC have been promoted as using real text sources to

highlight problems in the real world. We strongly feel that

there is also a need to provide a theoretical framework within

which these information extraction systems can be described,

compared and developed, by identifying key issues explicitly.

The framework we present here will allow researchers to

compare their methods as well as their results, and also

provides new methods for template creation.

Information extraction is a diverse research area, but one

common feature is the use of templates. A template is a pattern

designed to identify “interesting” information to be extracted

from documents, where “interesting” is relative to the user’s

intentions. An ideal template can be used to extract a large

proportion of the interesting information available with only a

little uninteresting information. Different types of templates

exist, but in general, they can be thought of as regular

expressions over words and the features of those words. Any

sentence can be matched with a large number of templates,

and many templates match a large number of sentences. This

makes template creation a challenging problem.

Although it covers several key areas, this paper focuses on

template creation. Currently, templates are typically designed

by hand, which can be laborious and limits the rapid applica-

tion of IE to new domains. There have been several attempts

at automatic template creation [6], [7], and there are likely to

be more in the future. To the best of our knowledge, no such

system has demonstrated widespread applicability, but tend to

be successful only within narrow domains. Some systems are

effective, but require extensive annotation of a training set [8],

which is also laborious.

One alternative to using templates is co-occurrence analysis

[9]. This identifies pieces of text (typically sentences, abstracts

or entire documents) that mention two entities, and assumes

that this implies that the two entities are in some way related.

Within our framework, this can be seen as a special case of

a template, albeit a very simple one, as we show in Section

II-C.

We propose treating template creation as a search problem

of a kind familiar to the artificial intelligence community

[10, ch. 3–4]. We define the space of candidate solutions

(i.e. templates); a means of evaluating and comparing these

candidate solutions; a means of generating new candidate

solutions; and an algorithm for guiding the search (including

starting and stopping). We expand these ideas in Section VI-B,

where we show how to “grow” useful templates from given

seed phrases.

However, in order to present our approach to template

creation, we need to establish a suitable theoretical framework.

Thus in Section II, we define the required concepts formally,

moving from words and documents to templates and informa-

tion extraction. In Section III, we describe how templates can

 Page 14

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

be ordered according to how specific or general they are, as

a precursor to template creation and optimisation. In Section

IV, we discuss how to modify a template to make it more

general. In Section V, we give formal definitions of recall and

precision within our framework. In Section VI, we discuss how

they might be estimated in practice, and then discuss heuristic

search algorithms and their feasibility, before a concluding

discussion.

The framework itself is described in Sections II–V, with the

remaining sections discussing possible implementations and

extensions. A longer form of this paper, with more detailed

examples and discussion is available as a technical report [11].

II. BASIC DEFINITIONS

In this section, we define several terms culminating in a

formal definition of information extraction templates.

Definition 1: A literal λ is a word in the form of an ordered

list of characters. We assume implicitly a fixed alphabet of

characters.

Examples: “cat”, “jumped”, “2,5-dihydroxybenzoic”.

Definition 2: A document d is a tuple (ordered list) of

literals: d =< λ1, λ2, . . . , λ|d| >.

Examples: d1 =<the, cat, sat, on, the, mat> , d2 =<a, mouse,

ran, up, the, clock>.

Definition 3: A corpus D is a set of documents: D =
{d1, d2, . . . , d|D|}.
Example: D1 = {d1, d2}.

Definition 4: A lexicon Λ is the set of all literals found in

all documents in a corpus: ΛD = {λ|λ ∈ d and d ∈ D}.
Example: ΛD1

= {the, cat, sat, on, mat, a, mouse, ran, up,

clock}.
Every word has a set of attributes, such as its part-of-speech

or its membership of a semantic class, some of which we now

discuss. Although particular attributes are not a formal part of

the framework, they are used in various illustrative examples

throughout this paper.

It is common practice in information retrieval to index

words according to their stem to improve the performance

[12]. Similarly in information extraction, it is often helpful to

identify words that share a common stem. Words may also

belong to pre-defined semantic categories, such as gazetteers

listing businesses, countries or proteins. In this framework,

we are not concerned with the nature of such categories, but

assume only that there exists some method for assigning such

attributes to individual words. The role of each word in a

sentence is defined by its part of speech, or lexical category,

such as “singular common noun”, “plural common noun” or

“past tense verb”. An implementation may limit this to exactly

one label per word, based on the context of that word.

In regular expressions, a wildcard can “stand in” for a range

of characters, and we use the same notion here to represent

ranges of words. For example, we use the symbol ‘*’ as the

universal wildcard which can be replaced by any word in the

lexicon, so every word has the attribute ‘*’. We also use the

symbol ‘?’ to represent any word or no word at all. We discuss

these wildcards further in Section IV-B.

Other categories may be introduced to capture other at-

tributes, such as orthography (e.g. upper case, lower case or

mixed case), word length, language and so on. We could

also treat punctuation symbols as literals if required, or as

a separate category. However, the categories described above

are sufficient to allow us to develop and demonstrate the

framework.

Definition 5: A category κ is set of attributes of words of

the same type. Common categories include “parts of speech”

and “stems”.

For convenience, we will label certain categories in these and

subsequent examples. The choice of categories is not part of

the framework but reflects categories likely to be used in a

practical implementation. In particular, we use Λ to label the

category “literals”; Π for “parts of speech” (lexical categories);

Γ for “gazetteers” (semantic categories); Σ for “stems”; and

Ω for “wildcards”.

Example:

κΛ = {the, cat, sat, on, mat, mouse, . . . }
κΣ = {the stem, cat stem, sit stem, on stem, mat stem. . .}
κΠ = {DT, NN, VBD, IN, . . .}
κΓ = {FELINE, RODENT, ANIMAL, . . .}
κΩ = {∗, ?, . . .}
We use the suffix ‘ stem’ in stem labels to avoid confusing

them with the corresponding literal. The part-of-speech labels

follow the Penn Treebank tags [13]. Thus we use the symbol

“DT” to represent determiners such as “the”, “a” and “this”;

“VB” to represent verbs in their base form, such as “sit” and

“walk”; “VBD” to represent past-tense verbs, such as “sat” and

“walked”; “NN” to represent common singular nouns, such as

“cat” and “shed” and so on.

Definition 6: Let K be a set of categories of attributes. Each

element κ of K is a single category of word attributes.

Example: K1 = {κΛ, κΣ, κΠ, κΓ, κΩ}.
Definition 7: A term t is a value that an attribute may take,

i.e. an element of a category of word attributes.

Examples:

t1 = cat, t2 = NN, t3 = FELINE, where t1 ∈ κΛ, t2 ∈ κΠ,

t3 ∈ κΓ.

Definition 8: We define a template element T to be a set of

terms belonging to a single category. Let T = {t1, t2, . . . , tn},
such that ti ∈ T . Then ti ∈ κ ⇐⇒ tj ∈ κ, ∀tj ∈ T .

Examples:

T1 = {NN, VBD}
T2 = {FELINE, RODENT, FLOOR COVERING}
The set {NN, FELINE } is not a template element because

“NN” and “FELINE” belong to different categories, namely

κΠ and κΓ respectively.

Definition 9: A template τ is a tuple of one or more

template elements, < T1, T2, . . . , Tn >, where T1 =
{t1,1, t1,2, . . . , }, T2 = {t2,1, t2,2, . . .} and so on. |τ | is the

number of template elements in template τ , and is always

greater than zero. Each template element Ti within a template

consists of one or more terms of the same type.

Example:

τ1 =< {the}, {FELINE, RODENT}, {VB, VBN} >.

 Page 15

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

Definition 10: The attributes of a literal are the set of

template elements defining the values of the literal in each

category. We first define the set of attributes of a literal λ
for a particular category κ as α(λ, κ) = {T |∀t ∈ T, t ∈
κ and λ has attribute t}. The set of all attributes of a literal

is the union of the attributes in each category: α(λ) =⋃
κ∈K α(λ, κ). If a literal has no value for a particular cat-

egory, then the category is omitted from the set α.

When we say “λ has attribute t”, we assume that this relation-

ship is defined outside of the framework. For example, there

may be functions to assign a stem attribute to a word, or to

assign a particular semantic category to any of a given list of

words.

Example: α(cat) = {{cat}, {NN}, {FELINE, ANIMAL},
{cat stem}}

In the case of α(the), the word “the” has a part-of-speech

tag “DT” (determiner) and the obvious literal, but no gazetteer

or stem entries. So α(the, κΠ) = {DT}, and α(the, κΓ) is

undefined, and so α(the) = {{the}, {DT}}.
The set of literal attributes Λ has the special property that

every word has exactly one literal. Other categories in K may

contain terms such that one literal may correspond to one or

more terms, or to no term at all. For example, one literal may

belong to more than one gazetteer, while another literal may

belong to none. Therefore for any λ, |α(λ, κΛ)| = 1. As a

consequence, for any λ, |α(λ)| ≥ 1.

A. Membership of Terms

We now define the concept of membership to refer to the

set of literals that share a particular attribute.

Definition 11: We define the members µ of a term t as

being the set of all literals that share the attribute value

defined by that term. I.e. µ(t) = {λ|t ∈ α(λ)}. Also, we

define the members of a set of terms (such as a template

element) as the union of the members of each term in the

set: µ({t1, t2, . . . , tn}) =
⋃n

i=1
µ(ti)

Examples:

µ(sit stem) = {sit, sits, sat, sitting }.
µ(FELINE) = {cat, lion, tiger, . . .}.
µ(RODENT) = {mouse, rat, hamster, . . .}.
µ({FELINE, RODENT}) = {cat, lion, tiger, mouse, rat,

hamster, . . .}.

B. Information Extraction by Matching Document Fragments

Definition 12: We define a fragment of a document as being

a tuple of successive literals taken from some document d. The

function f(d, a, b) returns a tuple of b words in order, from

d, starting with the ath word. Note that |f | = b. We say that

f ∈ d.

Example: If d1 =<the, cat, sat, on, the, mat >, then

f(d1, 4, 3) =<on, the, mat>.

Definition 13: A template matches a fragment of a docu-

ment d if each successive template element in the template

contains a term whose membership includes each successive

word in the fragment. Given a fragment f =< f1, . . . , fn >

and a template τ =< T1, T2, . . . , Tn >, we extend the

membership function thus:

µ(τ, d) = {f |f ∈ d and ∀i ∈ 1 . . . |τ |, fi ∈ µ(Ti)}

For a corpus D, the template matches the union of the template

membership for each document: µ(τ, D) =
⋃

d∈D µ(τ, d).

This function returns a set of fragments, each of which consists

of a tuple of literals that matches each successive element of

the template τ , and each of which is found in a document in the

corpus. Matching terms in this way is the core of information

extraction. The words that are matched define the information

that is to be extracted.

Example: Given a corpus D1 (as defined after Definition 3)

and a template τ1 =< {DT}, {ANIMAL}, {VBD} >, then

µ(τ1, D1) = {<the, cat, sat>, <a, mouse, ran>}.

C. Co-occurrence Analysis

Co-occurrence analysis assumes that two entities in the

same piece of text are related, without attempting a more

sophisticated linguistic analysis of the text. In our framework,

this can be represented by a template (or set of templates) that

defines the two entities with a series of wildcards between

them.

For example, suppose we use co-occurrence analysis to

discover every sentence in a corpus that mentions two en-

tities, as matched by template elements Ti and Tj . Let us

assume that all sentences to be considered are finite with

a maximum length of Q words. Then we could define two

template τ1 =< T1, . . . , Ti, . . . , Tj, . . . , TQ > and τ2 =<
T1, . . . , Tj , . . . , Ti, . . . , TQ >. Two templates are required if

we wish to allow for sentences with the two entities in different

orders. We replace every template element except for Ti and

Tj with the wildcard element ‘?’ so as to match any sentence

up to length Q that contains words that match our terms. With

three or more entities, larger sets of templates may be required.

III. TERM AND TEMPLATE ORDERING

One motivation for creating this framework is to enable the

use of common search algorithms for template creation. To do

this effectively, we must define an ordering over the templates,

which we can then use to develop practical search heuristics. A

template that matches every possible fragment in a document is

useless, as is one that matches no fragments at all. Somewhere

between these two extremes lie useful templates that match the

interesting fragments only, so the aim of template creation is to

find a suitable trade-off between the generic and the specific.

We therefore suggest that a useful ordering is one based on

the number of fragments that a template is likely to match. We

can use such an order to search across a range of templates

and explore the trade-off. For unseen text, it is impossible to

predict the amount of information to be extracted in advance,

so instead, we develop a heuristic ordering that approximates

it.

 Page 16

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

A. Superset Ordering of Terms and Template Elements

We define a specificity ordering over terms such that each

term matches every word that its antecedent matches, along

with zero or more extra words. We call this superset ordering.

Definition 14: Let ≥s be the ordering over superset speci-

ficity. Let t1, t2 be terms. If µ(t1) ⊆ µ(t2) then t1 ≥s t2, and

we say that t1 is at least as specific as t2. If µ(t1) ⊂ µ(t2)
then t1 >s t2, and we say that t1 is more specific than t2.

Example: Let FELINE and ANIMAL be two terms (specif-

ically, gazetteers), such that µ(FELINE) = {cat, lion, tiger

, . . .} and µ(ANIMAL) = {antelope, cat, lion, tiger,. . . ,

zebra}. Then µ(FELINE) ⊂ µ(ANIMAL) and so FELINE >s

ANIMAL.

Some specificity orderings are dependent on the categories

of the two terms. For example, if t1 ∈ κΛ, then ∀t2 ∈
K, t1 ≥s t2. In other words, terms that represent literals are

at least as specific as any other terms. Also, the wildcards ‘*’

and ‘?’ match every word, so we can say that wildcard terms

are no more specific than any other term. I.e. if t1 ∈ κΩ, then

∀ t2 ∈ K, t1 ≤s t2.

Definition 15: Let T1 and T2 be two template elements. We

say that T1 is at least as specific as T2 if and only if every

literal matched by any term in T1 is also matched by some

term in T2. I.e. T1 ≥s T2 ⇐⇒ ∀λ ∈ µ(T1), λ ∈ µ(T2).
Similarly, T1 >s T2 ⇐⇒ ∀λ ∈ µ(T1), λ ∈ µ(T2) and ∃λ ∈
µ(T2) such that λ /∈ µ(T1).
Thus T1 is more specific than T2 if every literal matched by

a term in T1 is also matched by a term in T2, and at least one

literal is matched by a term in T2 and not by a term in T1.

B. Ordering of Templates

We have discussed ordering of terms and of template

elements. Here we generalise this to discuss entire templates.

We want to be able to compare two templates, τ1 and τ2,

and say which is more specific, i.e. which one matches

fewer fragments. If τ1 and τ2 are related through superset

ordering, then for a given set of documents D, this is testing

if µ(τ1, D) ⊃ µ(τ2, D) and therefore whether |µ(τ1, D)| >
|µ(τ2, D)|. This depends on the corpus D and is potentially

slow to evaluate, especially if D contains a large number of

documents. Instead, we present an estimate of the relative

specificity which is independent of D, and which will be useful

when developing search heuristics.

If τ1 and τ2 contain the same number of sets of terms, then

τ1 ≥s τ2 ⇐⇒ T1,i ≥s T2,i i = 1 . . . |τ1|,

and

τ1 >s τ2 ⇐⇒ T1,i ≥s T2,i i = 1 . . . |τ1| and T1,j >s T2,j

for some j. We use Tn,i to refer to the ith element of template

τn.

Also, if two templates are identical except that one is

“missing” the first or last template element of the other,

then the shorter of the two is less specific. I.e. if τ1 =<
T1, T2, . . . , Tn−1, Tn >, τ2 =< T1, T2, . . . Tn−1 > and τ3 =<
T2, . . . , Tn−1, Tn > then τ1 ≥s τ2 and τ1 ≥s τ3.

Although these relationships do not provide a complete

ordering over all templates, they do allow us to create and

modify templates, and to develop useful search heuristics. We

use this ordering to develop functions that create and modify

templates in Section IV, and to develop methods to search

efficiently for good templates in Section VI.

IV. TEMPLATE GENERALISATION

Whether created manually or automatically, templates are

usually based on examples of “interesting” phrases, typically

identified by hand. These phrases are then used as “seeds”

to help define more general templates, and in this work we

assume that we are given some suitable phrases. We show

how a wide range of templates can be created from each

seed phrase. We first discuss how terms can be created and

generalised, and then expand this to template creation and

generalisation.

A. Creating and Modifying Template Elements

We now bring together several concepts discussed above,

and define functions that create and generalise template ele-

ments.

Definition 16: Given a literal, we want to create a new

template element, which is simply a set containing the literal.

We define the trivial function initialise for this purpose:

initialise(λ) = {λ}.
Have created a template element, we can then modify it.

We now define a function that modifies any given template

element to produce a new set of template elements that is at

least as general as the element given. This is based on the

notion of superset ordering (Section III-A) in that the new

template elements match a superset of the literals matched

by the original template element. Furthermore, the new set

of elements belongs to a specified category which is different

from the category of the source element.

Definition 17: We define a function to create a more general

set of template elements from a given template element, such

that all of the terms in each new template element are members

of a specified category. Given a template element T =
{t1, t2, . . . , t|T |} of category κ and given a target category

κ′ 6= κ, we create a set of template elements {T ′
1, T

′
2, . . . , T

′
n}

thus:

generalise(T, κ′) =

{T ′|T ′ = {t′1, t
′
2, . . . , t

′
m}, and t′1, t

′
2, . . . , t

′
m ∈ κ′, and

∀t′i ∈ T ′, |µ(t′i) ∩
⋃

t∈T

µ(t)| ≥ 1 , and

⋃

t∈T

µ(t) ⊆
⋃

t′∈T ′

µ(t′), and there is no set {t′p . . . t′q}

such that {t′p . . . t′q} ⊂ T ′ and
⋃

t∈T

µ(t) ⊆

q⋃

j=p

µ(t′j)}.

I.e. For each template element produced by generalise(T, κ′),
each term within that element belongs to category κ′; and

each term within that element matches at least one literal

matched by a term in T ; and every literal matched by a term

 Page 17

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

or terms in T is matched by at least one term in the template

element; and that no subset of terms exists that meets these

two requirements. Note that
⋃

t∈T µ(t) is the set of all literals

that are members of terms in the original template element T ,

and that
⋃

t′∈T ′ µ(t′) is the set of all literals that are members

of terms in the new template elements T ′. Each new template

element has to be different from the original template element,

as they belong to different categories. This effectively ensures

that the new element is more general than the original, and

not just as general.

Examples:

generalise({cat}, κΓ) = { {FELINE}, {ANIMAL} }
generalise({cat, dog}, κΓ) = { {FELINE, CANINE},
{ANIMAL} }

generalise({ {FELINE}, {ANIMAL} }, κΠ) = { {NN,

NNS } }
This last example holds if every member of the two

gazetteers “ANIMAL” and “FELINE” are singular common

nouns (NN) or plural common nouns (NNS).

Note also that generalise will return an empty set if no

generalisation exists that matches all the required literals. Thus

if the input set contains a literal that is not contained in any

member of κx, then generalise(T, κx) = ∅.

B. Creating and Modifying Entire Templates

In the previous section, we defined the creation and gen-

eralisation of template elements. Templates are ordered lists

of template elements (Definition 9), and we now apply the

above concepts to create and modify templates. Given a seed

phrase, in the form of a tuple of literals (i.e. a fragment),

we can easily define a very specialised template that matches

only that fragment. We can then modify this to increase its

generality.

Definition 18: We extend the initialise function to create a

specialised template from a fragment.

initialise(< λ1, λ2, . . . , λn >) =< {λ1}, {λ2}, . . . , {λn} > .
We define a new function that generalises any given tem-

plate to create a new set of templates by modifying a single

element of the template using the element generalisation func-

tion defined in Section IV-A. One template will be created for

each possible generalisation of the specified template element.

Definition 19: Given the template τ =< T1, T2, . . . , Ti,
. . . , Tn >, then

generalise(τ, κ, i) ={τ ′|T ′
i ∈ generalise(Ti, κ) and

τ ′ =< T1, T2, . . . , T
′
i , . . . , Tn >}

I.e. we replace the ith template element with the result of its

own generalisation.

Example: Let template τ1 =<the, cat, sat>. Then

generalise(τ1, κΓ, 2) = {<the, FELINE, sat>, <the, ANI-

MAL, sat>}. In this case, generalise(τ1, κΓ, 2) returns two

templates because the second literal “cat” belongs to two

gazetteers. In contrast, generalise(τ1, κΓ, 1) = ∅, because

the first literal “the” does not belong to any gazetteer in the

category κΓ.

So far, we have assumed that all templates are generated

from a seed phrase by replacing literals in that phrase with

other attributes. This restricts the templates created to be

the same length as the seed phrase, and so will only match

fragments of this fixed length. We can create templates which

match longer (or shorter) fragments by introducing wildcards

such as a “?” which matches any word or no word at all. The

details are discussed in [11].

V. MEASURING TEMPLATE QUALITY

In this section, we define recall, precision and related terms

within our framework. These measures are needed to guide the

automatic search for templates discussed in the next section.

Definition 20: We define I(D) as the set of interesting,

relevant fragments contained in corpus D.

The ideal template would match these, and only these, frag-

ments. This set is generally not known, as we discuss below,

but it does allow us to define concepts such as “true positive”

and the precision score. We now define a series of sets and

measures with respect to a template τ and a corpus D.

Definition 21: True-positives TP(τ, D) = µ(τ, D) ∩ I(D).
Definition 22: False-positives FP(τ, D) = µ(τ, D) \ I(D).
Definition 23:

Recall r(τ, D) =
|µ(τ, D) ∩ I(D)|

|I(D)|
=
|TP |

|I(D)|
.

Definition 24:

Precision p(τ, D) =
|µ(τ, D) ∩ I(D)|

|µ(τ, D)|
=

|TP |

|µ(τ, D)|
.

An ideal template would have |TP (τ, D)| = |I(D)| and

|FP (τ, D)| = 0. We therefore wish to maximise |TP (τ, D)|
while minimising |FP (τ, D)|, but there is typically a trade

off between the two. This is an example of multi-objective

optimisation. If we knew the relative value of true positives and

the cost of false positives, then we could combine these into

a single objective function, such as maximising |TP (τ, D)|−
k · |FP (τ, D)|. In practice, such a weighting is not usually

available, but a number of evolutionary approaches have been

successfully applied to similar problems [14], as we discuss

further in Section VI-E.

VI. SEARCHING FOR GOOD TEMPLATES

In VI-B we will discuss the development of search algo-

rithms, but first we need a practical way to estimate true-

positive and false-positive scores.

A. Estimating True- and False-positive Scores

As noted earlier, we do not know which fragments are

interesting a priori, and so definitions 21–24 cannot be used

directly in calculating the recall or precision of a template.

Instead, we need something that we can measure in practice,

and which should approximate the “ideal” values above.

Suppose that we had a set of documents such that every

fragment was labelled as either “interesting” or “not in-

teresting”. Then we could use standard supervised learning

algorithms to construct useful templates and directly measure

 Page 18

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

the number of true positives, false positives and so on, to find

an optimal template. This could then be used to find further

information in the same field. However, while a small number

of such labelled corpora do exist (e.g. [15]), they are for a few

very precisely defined application areas, and so of little general

use, as they cannot be used to aid IE in other application areas.

Annotating documents in this way is very time consuming for

a domain expert, and one aim of information extraction is to

reduce the time and effort required to find relevant information.

Suppose instead that we have a set of “positive” docu-

ments, each of which is believed to contain some interesting

information, and also a set of “neutral” documents, each of

which may or may not contain relevant information. I.e. we

have no prior knowledge about relevant information in neutral

documents. Such sets are easier to define, for example by

using information retrieval methods. We can then compare

the proportion of information retrieved from neutral and from

positive documents to evaluate a template. We assume that a

“good” template will retrieve more information from positive

documents than from neutral documents, even if we don’t

know in advance which pieces of information are useful,

or how much useful information exists in any particular

document.

We divide a corpus D into two sets, namely the set of

positive documents, D+, and the set of neutral documents,

DN , such that D = D+∪DN and D+∩DN = ∅. We now use

these sets of documents to define estimates of the numbers of

true-positive fragments and false-positive fragments matched

by a template τ .

Definition 25: We define an estimated true-positive set

T̂ P (τ, D) = µ(τ, D+),

Definition 26: We define an estimated false-positive set

F̂P (τ, D) = µ(τ, DN).

Although these estimates are too crude to allow estimation

of precision and recall scores, they are sufficient to guide the

search for useful templates.

Let us consider some other properties of templates generated

using superset generalisation. Suppose we have two templates,

τ1 and τ2. If τ1 >s τ2, then µ(τ1, D) ⊂ µ(τ2, D). This relative

specificity relation holds for any set of documents, so if one

template matches fewer fragments than another in one corpus,

then it will in any other corpus as well. Thus given two corpora

Da and Db:

|µ(τ1, Da)| < |µ(τ2, Da)| =⇒ |µ(τ1, Db)| ≤ |µ(τ2, Db)|.

We defined terms such as “true positive” and “false positive”

above. Now we can say that if τ1 >s τ2, then the number

of true positives returned by τ1 is no more than the number

returned by τ2, and equivalently for other scores:

|TP(τ1, D)| ≤ |TP(τ2, D)|

and

|FP(τ1, D)| ≤ |FP(τ2, D)|.

The equivalent inequalities also hold for the estimates defined

above. I.e. if τ1 >s τ2, then

|T̂P(τ1, D)| ≤ |T̂P(τ2, D)|

and

|F̂P(τ1, D)| ≤ |F̂P(τ2, D)|.

As these relationships hold for any set of documents D, we can

predict some properties of templates without fully evaluating

them. This property will be useful in developing heuristic

search methods, as we discuss in Section VI-C.

B. Search Algorithms

As stated in the introduction, heuristic searching requires

definitions of candidate solutions; a means to generate and

evaluate candidate solutions; and a suitable search algorithm.

We have now defined the candidate solutions (i.e. templates,

Definition 9) and means to generate (Section IV) and evaluate

them (using estimates of true positive and false positive scores

given in Definitions 25–26). We now turn to the search

algorithms themselves.

In all cases, we assume that we are given a seed fragment f .

The root node of the search corresponds to a template consist-

ing of a tuple of template elements, each containing a single

literal: τroot = initialise(f) (Definition 18). From this, we can

modify each element in the template by a single application

of the generalise(τ, κ, i) function (Definition 19). We can

estimate the number of true positives and false positives of

each of these new templates, and then decide which template

to explore and modify next. The exact number of templates

produced at each stage depends on the words themselves,

because each generalise(τ, κ, i) function will return 0, 1

or more templates (see Definition 17 and the accompanying

discussion). We must also decide when to terminate the search,

as we do not know a priori the quality of the best possible

template, as we are assuming that we do not have a fully

labelled corpus.

A simple exhaustive search method would be to start with

a literal template created from the seed phrase using the

initialise function. For each element in this template, we then

apply the generalisation function, using each category in turn,

so that each application generates a new template. If every

literal has exactly |α| attributes, then a seed phrase of |f |
literals has |α||f | possible templates. Thus a 20-word seed

phrase consisting of literals having 5 attributes will be matched

by 520 ≈ 1014 templates. In practice, some words will have

fewer attributes (e.g. words that don’t appear in any gazetteers)

and some will have more. We therefore need to introduce

heuristics to make the search feasible, unless the seed fragment

is very short.

C. Feeding Knowledge Forward

After estimating the numbers of true positives and false

positives for any template, we can place a lower bound on

those values for all templates that are derived using the

generalise function. This is because we know that the derived

 Page 19

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

Fig. 1. Part of a search tree. Each node is a template with the number of
true positives (x+) and false positives (yN) shown, with a “?” for unknown
values. Each child node can be created by superset generalisation from any
of its parents.

templates will match a superset of the fragments matched by

the ancestor template (Section VI-A).

For example, suppose we have a template τ1 and we

evaluate this and find it matches 20 positive fragments and 50

neutral fragments, i.e. |µ(τ1, D+)| = 20 and |µ(τ1, DN)| =
50. If we then modify τ1 using superset generalisation to create

τ2, then we know that µ(τ1, D) ⊆ µ(τ2, D) for any corpus

D. We therefore know that τ2 matches at least 20 positive

fragments and at least 50 neutral fragments, from D+ and DN

respectively. Furthermore, any other templates derived using

superset generalisation from τ1 or from τ2 will also match at

least those numbers.

Therefore, as we carry out a search, we can calculate lower

bounds on the estimates of true positives and false positives for

a wide range of templates without the computational expense

of evaluating each template. Instead, we can just choose the

best template from the range available, if we use a best-first

search. By “best” here, we might mean the template with the

(estimated) most true positives, which will tend to produce

templates with a high recall, though possibly with a low

precision. If instead we choose the template that matches the

least false-positive fragments then we will tend to produce

templates with a high precision, though possibly with a low

recall. Which of these options is more appropriate depends on

the task at hand.

Every template has at least one parent, because they are cre-

ated using superset generalisation; but most templates can be

created in more than one way, from several parent templates.

Therefore, many templates will have more than one parent.

Consider the partial search graph shown in Figure 1. Here,

templates τ0 – τ4 have been evaluated, and the number of true

positives and false positives are shown for each. For example,

τ1 matches 20 fragments from D+ and 50 from DN , and

is therefore assumed to match 20 true positives and 50 false

positives. At this stage of the search, the decision to be made

is which node to evaluate next: τ5 or τ6? We can feed forward

the facts that the two parent templates of τ5, τ1 and τ2 have

20 and 15 true positives respectively, and that therefore τ5

must have at least 20 true positives. Similarly, it must have

at least 60 false positives. On the other hand, τ6 must have

at least 40 true positives, and at least 55 false positives. We

would therefore decide to evaluate τ6 in preference to τ5 at

this point, because it has a higher lower-bound on the number

of true positives, and a lower lower-bound on the number of

false positives.

From these observations, we can then develop specific

algorithms, such as the best-first algorithm we now describe.

D. A best-first algorithm

We now present a formal definition of a best-first algorithm

suitable for identifying good templates, followed by an exam-

ple. We start by defining two sets of templates. Set O (“open”)

contains templates that have been created (via initialise or

generalise), but not yet evaluated. Set C (“closed”) contains

templates that have been evaluated, i.e. had values of TP and

FP calculated. Note that O ∩C ≡ ∅.
Figure 2 gives the algorithm. After initialisation, we take

the best template that has not yet been evaluated, and evaluate

it, i.e. calculate its true positive and false positive scores.

We then generalise it in every way possible to create child

templates, and update the lower bounds on the true and false

positive scores for these children. Because there are several

ways that each template could be created, some children will

have more than one parent. In these cases, the lower bounds

are the maximum of the lower bounds of all the parents.

1) begin

2) C ← ∅, O← ∅
3) initialise(f) = τroot → O
4) while not finished do

a) find estimated best template τ in O
b) evaluate τ
c) delete τ from O
d) add τ to C
e) expand τ by adding to O all templates that can be

created by superset generalisation of τ
f) update lower bounds on TP and FP for all tem-

plates in O

5) return best template from C.

6) end

Fig. 2. A best-first algorithm. C is the “closed” set of evaluated templates
and O is the “open” set of unevaluated templates. See Section VI-D for further
details.

By “best template” (Figure 2, Steps 4a and 5), we mean

select the template with the highest lower-bound on the

number of true positives, as inherited from each template’s

ancestors. If more than one template has the same maximum

true positive lower-bound, then we choose between them by

selecting the template with the smallest lower-bound on false

positives. If this still selects more than one template, we can

either pick one randomly; use them all successively; or use

all the selected templates together in the subsequent steps (i.e.

evaluate and generalise more than one template in one pass

through the main loop).

 Page 20

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

In Step 4f we could choose to either update the bounds

of just the descendents of τ in O, or else update the bounds

of the descendents of every template in C. The latter would

be more computationally expensive, but would lead to better

estimates of the lower bounds. For each new template created,

it would require a search through C to find all the other

possible ancestors, besides τ , in order to calculate the new

lower bounds.

Finally, we terminate the search when some pre-specified

criterion is satisfied. Possible criteria include terminating:

when O is empty (in which case every possible template has

been evaluated); or when a limit on the number of evaluations

is reached (e.g. stop after 1000 templates have been evaluated);

or when a certain number of true positives (or false positives)

are matched by the current best template. It would be quite

possible for the user to stop the search and consider the current

best template, before re-starting the search if necessary.

As a more concrete example, Figure 3 shows part of a

search graph containing various templates created from the

seed fragment “the cat sat”, and evaluated with respect to the

two small corpora shown.

Consider the right-hand portion of the graph. Near the

top are two templates: <the, *, sat> and <the, cat, *>,

both created using the generalise(τ, κΩ, i) function. The first

matches one true positive and no false positives (shown as

1+0N in the figure). The second matches one true positive and

one false positive. By the definition of superset generalisation,

we know that every template derived from this second template

will have at least one true positive and one false positive.

So if, at one stage of a search, we only want to consider

templates with no false positives, then we need not consider

any descendent of this template. The two descendents shown

(<the, *, *> and <*, *, *>) need not be evaluated explicitly

therefore; they can be annotated as having at least one false

positive, although in the figure, the fully evaluated scores are

shown.

Now consider the third row of templates in Figure 3, i.e.

those created after two generalisation functions. From the left

of the graph, three of these have two true positives (<the FE-

LINE VBD>, <the FELINE *> and <the ANIMAL VBD>)

and one has only one true positive, so we focus the search on

the first three. These have zero, one and one false positives

respectively, making the first one look most promising: <the,

FELINE, VBD>. This is the best unevaluated template so

far. Several further generalisations are possible from this tem-

plate, including applying generalise(τ, κΩ, 3) to form <the,

FELINE, *>. But this has already been evaluated, so need

not be considered again. Applying generalise(τ, κΠ, 1) forms

<DT, FELINE, VBD> which has three true positives, and still

no false positives. Given the two very small document sets,

this is an optimal template, so we stop the search here. In a

more realistic application, the search would continue until a

stopping criterion was reached, but would not find any superior

template.

One modification to the algorithm would require more

memory but should lead to a faster convergence to a (possibly)

superior solution. This is to expand the unevaluated template

set O by repeated applications of the generalise function

until it contains every template that could possibly be derived

from the seed phrase, or as many as is practically possible.

We would then proceed with a best-first search, but with

the advantage that after each evaluation, a large number of

unevaluated templates will have the lower bounds of their true-

and false-positive estimates updated, because their ancestry

would be explicitly represented on the search graph. This

should improve the selection of the best template at each stage.

The algorithm above does not prune any part of the search

graph, but merely tends to search promising areas first. In prac-

tice, this is likely to lead to very large memory requirements,

which can be avoided through pruning. Pruning search graphs

is a lot more difficult than pruning trees because each node can

have multiple parents, and so after a node is pruned, it may

reappear as part of a different path. Although algorithms such

as A* are inappropriate here1, recent variations may provide

useful pruning methods, such as SMA* [10, p. 104] and Sweep

A* [16].

E. Multi-objective search methods

A best-first search may miss out on good templates because

of its greedy decision making. This would be true even if

the estimates of the numbers of true and false positives were

perfect, owing to the structure of the graph: we can’t guarantee

that the best parents will have the best children. One likely

improvement therefore would be a population based search,

such as a simple beam search or an evolutionary algorithm.

Evolutionary algorithms have been successfully used to

solve a wide range of multi-objective optimisation problems

[14]. Extracting information from a large corpus takes con-

siderable computing effort, so this is an aspect worth consid-

ering. Multi-objective evolutionary algorithms can efficiently

generate a range of Pareto-optimal solutions, and so explore

the trade-off between the different objectives. In our case, this

means that for each number of true positives, we find the

template with the fewest false positives, and for each number

of false positives, we find the template with the most true

positives. This produces a range of solutions from which the

user can then select whichever template or templates are most

suitable for their particular problem.

VII. DISCUSSION AND EXTENSIONS

We now briefly discuss a few of the possible extensions to

the framework.

We could introduce other wildcards, such as a wildcard

which matches an entire phrase, which could itself be defined

as a series of terms, much like a template. This would

allow optional subclauses, such as subordinate clauses, to be

matched. Let ?τ1 designate an optional wildcard that matches

a sequence of literals defined by template τ1 or nothing at

all. Then if τ1 =<{which}, {*}, {*}>, the template τ2 =<

1We have no notion of a path cost, and are only interested in the final
solution rather than the path to it.

 Page 21

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

D+ DN

{the cat sat} {the mouse ran}
{the lion roared} {a cow jumped}
{a tiger slept} {the cat plays}

Fig. 3. Part of a search graph for a three-term template. Each rectangle shows a template, starting with three sets of literals at the top initialised from the
fragment “the cat sat”. Various generalisation functions are then applied to it. For example, gen(Γ, 2) means apply the generalise(τ, κΓ, 2) function to the
upper template, τ , to produce the lower template(s). The graph includes part-of-speech labels “VBD” meaning past-tense verb and “DT” meaning determiner.
The numbers in each box below the template represent the estimated numbers of true-positive and false-positive matches for each template, with respect to
the positive and neutral document sets D+ and DN shown. Note that not every node or edge is shown.

{DT}, {ANIMAL}, {?τ1}, {sat} > would match the fragment

<the, cat, which, was, black, sat> as well as <the, cat, sat>.

An additional approach to finding good templates is to

repeatedly merge useful templates to produce more general

templates [17]. Our framework could easily be extended to

allow this, by ensuring that the product of merging two tem-

plates matches every fragment that either template matches.

This could be achieved by considering each pair of template

elements in turn, and either performing a simple set union if

they belong to the same category, or else generalising them

both to the same category before such a union. In either case,

the new template would match the union of the true-positives

matched by the two parents, and the union of the false-

positives, allowing the lower-bounds on each to be calculated.

So far, we have considered template that exist in isolation,

whereas in practical systems, it is more common to apply a

set of templates together. Our framework can be extended to

include this. Suppose we have a template τ that matches some

true positives and some false positives. We could reduce the

number of false positives by creating a second template τ ′

that is optimised to match just the false positive fragments

matched by τ . This could be achieved by defining two new

 Page 22

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

versions of D+ and DN based on the fragments matched by

τ , and using these to guide the search for τ ′. We could then

apply τ and τ ′ together, predicting interesting fragments as

µ(τ, D) \ µ(τ ′, D) (i.e. fragments matched by τ but not by

τ ′.). In many practical applications, more than one template

will be applied to a set of documents, each designed to match a

different piece of information, or a different way of expressing

that information.

We have assumed that we do not have a set of annotated

examples, i.e. fragments known in advance to be positive

or negative. Creating and annotating large sets of examples

is extremely time consuming for a user, although giving a

yes/no response to automatic annotations is simpler [18]. One

enhancement to our system therefore would be to start with the

estimates of true positive and false positive as outlined above,

and search for a good template, and then use this template to

annotate a number of fragments and to present these to the

user. The user then marks each fragment as interesting or not

interesting, and this could then be used to improve the quality

of the function used to estimate the numbers of true and false

positives. This improved function could be used to guide a

new template search.

Finally, rather than starting with a seed fragment and a

template consisting solely of literals, we could start the search

using a hand-written template. This would not have to be

optimised in advance, and in some cases, would be easy to

create. The search could then start from a point chosen to be

useful and optimised further through similar search processes

to those outlined above.

VIII. CONCLUSION

We have presented a formal framework to describe infor-

mation extraction, focusing on the definition of the template

patterns used to convert free text into a structured database.

The framework has allowed us to explicitly identify some

of the fundamental issues underlying information extraction

and to formulate possible solutions. We have shown that the

framework allows computationally feasible heuristic search

methods to be developed for automatic template creation. We

believe that a practical implementation of this framework is

feasible which will allow automatic template creation. We also

hope that the framework will allow other researchers to gain

further insights into the theory and practice of information

extraction and text mining.

ACKNOWLEDGMENTS

This work is partly funded by BBSRC grant BB/C507253/1,

“Biological Information Extraction for Genome and Superfam-

ily Annotation.”

REFERENCES

[1] J. Cowie and W. Lehnert, “Information extraction,” Communications of

the ACM, vol. 39, no. 1, pp. 80–91, 1996.
[2] J. Cowie and Y. Wilks, “Information extraction,” in Handbook of Natural

Language Processing, R. Dale, H. Moisl, and H. Somers, Eds. New
York: Marcel Dekker, 2000.

[3] C. Blaschke and A. Valencia, “The frame-based module of the SUISEKI
information extraction system,” IEEE Intelligent Systems, vol. 17, no. 2,
pp. 14–20, Mar. 2002.

[4] L. Hirschman, A. Yeh, C. Blaschke, and A. Valencia, “Overview of
BioCreAtIvE: critical assessment of information extraction for biology,”
BMC Bioinformatics, vol. 6, no. Suppl 1, 2005.

[5] D. P. A. Corney, B. F. Buxton, W. B. Langdon, and D. T. Jones,
“BioRAT: Extracting biological information from full-length papers,”
Bioinformatics, vol. 20, no. 17, pp. 3206–13, 2004.

[6] R. Collier, “Automatic template creation for information extraction,”
Ph.D. dissertation, Department of Computer Science, University of
Sheffield, 1998.

[7] D. Pierce and C. Cardie, “Limitations of co-training for natural language
learning from large datasets,” in 2001 Conference on Empirical Methods

in Natural Language Processing. Association for Computational
Linguistics Research, 2001.

[8] E. Riloff, “Automatically constructing a dictionary for information
extraction tasks,” in National Conference on Artificial Intelligence, 1993,
pp. 811–816.

[9] A. Koike, Y. Niwa, and T. Takagi, “Automatic extraction of gene/protein
biological functions from biomedical text,” Bioinformatics, vol. 21,
no. 7, pp. 1227–1236, April 2005.

[10] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
2nd ed. Prentice Hall, 2003.

[11] D. P. A. Corney, E. L. Byrne, B. F. Buxton, and D. T. Jones, “A
logical framework for template creation and information extraction:
A technical report,” Dept. of Computer Science, University College
London, Technical report RN/05/23, Oct. 2005.

[12] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14, no. 3,
pp. 130–137, 1980.

[13] M. Marcus, B. Santorini, and M. A. Marcinkiewicz, “Building a large
annotated corpus in English: the Penn Treebank,” Computational Lin-

guistics, vol. 19, pp. 313–330, 1993.
[14] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary

algorithms in multiobjective optimization,” Evolutionary Computation,
vol. 3, no. 1, pp. 1–16, 1995.

[15] J. Kim, T. Ohta, Y. Tateisi, and J. Tsujii, “GENIA corpus–semantically
annotated corpus for bio-textmining,” Bioinformatics, vol. 19 Suppl 1,
pp. 180–182, 2003.

[16] R. Zhou and E. Hansen, “Sweep A*: Space-efficient heuristic search
in partially-ordered graphs,” in Fifteenth IEEE International Conference

on Tools with Artificial Intelligence, Sacremento, CA, Nov. 2003.
[17] C. Nobata and S. Sekine, “Towards automatic acquisition of patterns

for information extraction,” in International Conference of Computer

Processing of Oriental Languages, 1999.
[18] D. Pierce and C. Cardie, “User-oriented machine learning strategies for

information extraction: Putting the human back in the loop,” in Working

Notes of the IJCAI-2001 Workshop on Adaptive Text Extraction and

Mining, 2001, pp. 80–81.

 Page 23

ICDM 2005 Workshop on Foundation of Semantic Oriented Data and Web Mining

